【振動噪音產學技術聯盟】網頁導覽影片

為提供訪客更多、更清楚的資訊,我們建立【振動噪音產學技術聯盟】網頁導覽影片,只要10分鐘的時間,快速為您介紹聯盟網頁架構、網頁內涵及如何應用,讓您多了解【振動噪音產學技術聯盟】網頁!

振動噪音產學技術聯盟

Facebook粉絲專頁

《振動噪音科普專欄》振動的傅立葉頻譜和功率頻譜有甚麼不同?

這個單元要來探討的主題是:振動的傅立葉頻譜(Fourier spectrum)功率頻譜(power spectrum)有甚麼不同?

 

為什麼要探討這個主題呢?一般常說頻譜(spectrum),就有傅立葉頻譜」以及「功率頻譜」兩者是有很大的差異。

 

尤其在討論R-test-VResponse-test-Vibration響應-實驗-振動:最常用的感測器是加速度規(accelerometer),就是量測結構的加速度響應 𝒂(𝒕)。需要解析各種振動的頻譜」,這個單元就來探討區別「傅立葉頻譜」以及「功率頻譜」兩者之間的關係與差異。

 

參閱圖示左上方,顯示先前單元:#109對一個信號進行頻譜分析的原理為何?】,振動量測信號的頻譜分析流程圖,有甚麼Index 指標?簡要回顧說明如下:

 

1.      𝒂(𝒕) = time waveform = 時間波形:量測到的加速度響應 𝒂(𝒕),是原始數據(raw data)

2.      𝑨(𝒇) = Fourier spectrum = 傅立葉頻譜:對 𝒂(𝒕)進行FFT快速傅立葉轉換(fast Fourier transform, FFT)處理,可以得到𝑨(𝒇) 傅立葉頻譜,會是複數,不可平均,是單一個時間區間的頻譜特徵。所以,通常並不會深入探討。

3.      𝑮𝒂𝒂(𝒇) = acceleration spectrum = 加速度頻譜:取得的 𝑨(𝒇),透過PSD (power spectral density, PSD)處理,可以取得加速度的功率頻譜(power spectrum, auto PSD spectrum) 𝑮𝒂𝒂(𝒇),可簡稱加速度頻譜(acceleration spectrum)加速度頻譜顯示的峰值(peaks),就是主要振動的頻率。

4.      𝑮𝒂𝒂,𝟏/𝟑(𝒇𝒄) = 1/3 octave band spectrum = 三分之一倍頻頻譜:再由𝑮𝒂𝒂(𝒇),進行三分之一倍頻(one third octave band)處理,可以取得 𝑮𝒂𝒂,𝟏/𝟑(𝒇𝒄),主要是配合人體感官的效果。

5.      𝑳𝒂,𝒆𝒒 = equivalent acceleration level = 等效加速度位準/加速度級:由𝑮𝒂𝒂,𝟏/𝟑(𝒇𝒄),可以累加 𝑮𝒂𝒂,𝟏/𝟑(𝒇𝒄) 每一個 𝒇𝒄 中心頻率(central frequency)加速度位準dB,進而得到𝑳𝒂,𝒆𝒒。簡單說,就是在量測時間內的加速度大小之平均值,實際上是均能 (equivalent energy)的概念。

6.      𝑮𝒂𝒂(𝒕,𝒇) = spectrogram = 時頻圖:必須透過時頻分析(time frequency analysis),常用短時傅立葉轉換(short time Fourier transform, STFT)處理,以得到時頻圖。

7.      𝑳𝒂(𝒕) = acceleration level = 加速度位準/加速度級:對應時間軸,每一個瞬間的加速度位準/加速度級。

 

本單元著重在區別:振動的傅立葉頻譜𝑨(𝒇) 以及「功率頻譜𝑮𝒂𝒂(𝒇),以及實務上,如何取得 𝑨(𝒇)以及 𝑮𝒂𝒂(𝒇)

 

首先,參閱圖示左邊的【量測FFT參數設定】以及完整的64 sec量測到的加速度響應 𝒂(𝒕),是原始數據(raw data)。有關FFT參數設定,重點說明如下:

 

1.      Nyquist Frequency = 20000 Hz:是最高的有效頻率範圍,Fmax = 20000 Hz

2.      Frequency Lines = 12800 lines:是頻譜的解析條數(Line of resolution, LOR)LOR = 12800

3.      Resolution = 1.5625 Hz:是頻譜的頻率解析度,R = Fmax / LOR = 20000 / 12800 = 1.5625 Hz

4.      Average Times = 100:設定的平均次數,AVG = 100

5.      Overlap = 0%:平均處理(averaging)的時間波形數據之重疊率為Overlap = 0%,也就是完全沒有重疊。

6.      Measurement Time = 64 sec:如果,一個FFT的分析時間長度,T = 1/R = 1/1.5625 = 0.64 s。總量測時間:Ttotal = T + T*(1- Overlap%) *(AVG-1) = 0.64 + 0.64*(1- 0%) *(100-1) = 64 s

 

接下來,就來看如何進行信號的頻譜分析(spectral analysis),以取得振動的加速度傅立葉頻譜𝑨(𝒇) 以及「功率頻譜𝑮𝒂𝒂(𝒇)說明如下:

 

1.      振動加速度傅立葉頻譜𝑨(𝒇):理論上,是透過傅立葉轉換(Fourier transform),由 𝒂(𝒕)取得𝑨(𝒇),數學表示式:𝑨(𝒇)=𝓕[𝒂(𝒕)],其中,𝓕[ ]代表傅立葉轉換運算子,是積分計算。而實務上是透過FFT快速傅立葉轉換(fast Fourier transform, FFT)處理,而得到𝑨(𝒇) 傅立葉頻譜,會是複數,不可平均,是單一個時間區間的頻譜特徵。參閱圖示,當取AVG = 100次平均,會有100𝑨(𝒇),圖示呈現的是𝑨(𝒇) 的振幅值| 𝑨(𝒇)|,由於沒有平均,看到的頻譜,不具代表性,通常並不會深入探討,可以視為過程資訊。然而,通常有興趣的平均頻譜是 𝑮𝒂𝒂(𝒇)

2.      振動加速度功率頻譜𝑮𝒂𝒂(𝒇):比較完整的名詞是自身功率頻譜(auto power spectrum)數學表示式:𝑮𝒂𝒂(𝒇)= 𝑨(𝒇) 𝑨(𝒇)/𝜟𝒇,其中,是取共軛複數(complex conjugate)𝜟𝒇 = R =頻率解析度,所以,𝑮𝒂𝒂(𝒇)是純實數,可以取平均。本案例,如圖示的𝑮𝒂𝒂(𝒇),是AVG = 100次的平均。

 

取得了振動加速度功率頻譜𝑮𝒂𝒂(𝒇),繪圖呈現的方式,參閱圖示左下方的四個圖示,有兩種方式,說明如下:

 

1.      y軸:物理量 = 加速度 (g),可以取LIN (linear) 或是 LOG (logarithmic)座標。而x軸:物理量 = 頻率 (Hz),也是可以取LIN (linear) 或是 LOG (logarithmic)座標。透過y軸的linear圖示,可以容易判斷,高振動的實際頻帶,圖示案例,主要高振動頻帶,大約在0~6000 Hz。那麼,又為什麼需要觀察𝑮𝒂𝒂(𝒇)dB圖示?因為,可以看出可能的共振之自然頻率效應。

2.      y軸:物理量 = 加速度位準 (dB),完整的單位標註:dB 𝒓𝒆 𝟏𝟎^(−𝟔) 𝐦/𝐬^𝟐  =𝟏𝟎^(−𝟔)/(𝟗.𝟖𝟎𝟕) 𝐠。會除以𝟗.𝟖𝟎𝟕,是因為: 1 𝐠 = 𝟗.𝟖𝟎𝟕 𝐦/𝐬^𝟐加速度位準的定義:𝑳𝒂=𝟐𝟎 𝐥𝐨𝐠𝟏𝟎 (𝑨𝒓𝒎𝒔/ 𝑨𝒓𝒆𝒇),其中,𝑨𝒓𝒆𝒇=𝟏𝟎^(−𝟔) 𝐦/𝐬^𝟐。而x軸:物理量 = 頻率 (Hz),也是可以取LIN (linear) 或是 LOG (logarithmic)座標。x軸,會取LOG座標,主要是配合人體感官的感覺效果,人體對頻率的變動是LOG,而不是LIN。在爾後單元探討 𝑮𝒂𝒂,𝟏/𝟑(𝒇𝒄) = 1/3 octave band spectrum = 三分之一倍頻頻譜,會再詳細討論。

 

如果,由𝑮𝒂𝒂(𝒇)圖示,比較y軸:物理量 = 加速度 (g),以及y軸:物理量 = 加速度位準 (dB),可以觀察到,兩者的曲線趨勢完全相同,因為取dB,已經有取LOG的效果。

 

要注意:實務上在解讀分析振動加速度頻譜,會是以加速度功率頻譜𝑮𝒂𝒂(𝒇)為主,同時,也會以y軸:物理量 = 加速度位準 (dB),進行診斷分析。

 

綜合一下這個單元的討論:振動的加速度傅立葉頻譜(Fourier spectrum)功率頻譜(power spectrum)有甚麼不同?總結如下:

 

1.      回顧了先前單元:#109對一個信號進行頻譜分析的原理為何?】:振動量測信號的頻譜分析流程圖,𝒂(𝒕) 𝑨(𝒇) 𝑮𝒂𝒂(𝒇) 𝑮𝒂𝒂,𝟏/𝟑(𝒇𝒄) 𝑳𝒂,𝒆𝒒

2.      本單元著重在區別:𝑨(𝒇)傅立葉頻譜(Fourier spectrum) 𝑮𝒂𝒂(𝒇)功率頻譜(power spectrum),以及對應的數學學理以及數值分析。𝑨(𝒇) 由於沒有平均,看到的頻譜,不具代表性,通常並不會深入探討,可以視為過程資訊。然而,通常有興趣的平均頻譜是 𝑮𝒂𝒂(𝒇),振動的診斷分析,會是以加速度功率頻譜𝑮𝒂𝒂(𝒇)為主。

3.      針對𝑮𝒂𝒂(𝒇)的繪圖呈現方式:實務上,𝑮𝒂𝒂(𝒇) 會以y軸:物理量 = 加速度 (g),或 加速度位準 (dB) 進行分析診斷。取dB時,要注意其參考值 𝑨𝒓𝒆𝒇=𝟏𝟎^(−𝟔) 𝐦/𝐬^𝟐 的定義。x軸:物理量 = 頻率 (Hz),可以取LIN (linear) 或是 LOG (logarithmic)座標,各有其需求與應用目的。

 

以上個人看法,請多指教!

 

王栢村

2024.02.27