【振動噪音產學技術聯盟】網頁導覽影片

為提供訪客更多、更清楚的資訊,我們建立【振動噪音產學技術聯盟】網頁導覽影片,只要10分鐘的時間,快速為您介紹聯盟網頁架構、網頁內涵及如何應用,讓您多了解【振動噪音產學技術聯盟】網頁!

振動噪音產學技術聯盟

Facebook粉絲專頁

《振動噪音科普專欄》SDOF簡諧激振FRF系列(8):簡諧外力振幅增大或減小,對頻率響應函數(FRF)有甚麼影響?

 

這個單元是SDOF簡諧激振FRF系列的8,要來探討的主題是:簡諧外力振幅(harmonic force amplitude)增大或減小,對「頻率響應函數(Frequency Response Function, FRF)有甚麼影響?

 

首先,快速回顧一下這個「外力激振」「單自由度系統」,參考圖示左上方,是實際結構的示意圖,一個質塊,懸吊在一個彈簧下面,彈簧的另一端是固定邊界,當質塊受到外力作用,質塊會有上下振盪的現象。

 

為了分析這個質塊-彈簧的實際結構(real structure),建構此系統數學模型(mathematical model),如示意圖。其中,

 

1.          系統參數(system parameters),就是:mck,分別是質塊的「質量(mass)、彈簧的「黏滯阻尼係數(viscous damping coefficient)、彈簧的「彈簧常數(spring constant)

2.          輸入」是f(t),為系統的外力,以及質塊本身的兩個「初始條件(initial condition, IC),包括:「初始位移(initial displacement) X0及「初始速度(initial velocity) V0

3.          輸出」是x(t),為系統質塊的位移響應。

 

由系統的數學模型」,可以推導出這個單自由度系統」的「運動方程式ma+cv+kx=f(t)。是「二階的常微分方程式」,所以需要兩個「初始條件」:「初始位移X0及「初始速度V0。【備註:比較明確的數學方程式,請讀者參考圖示,在文字說明,受限於方程式編寫,分別以xva,代表位移速度加速度。】

 

接著,定義系統的「輸入參數」,假設系統受到了簡諧外力」激振,為正弦函數 𝒇(𝒕)=𝑭𝐬𝐢𝐧(𝟐𝝅𝒇𝒕),其中,𝑭 =簡諧外力振幅」;𝒇=簡諧外力」的「激振頻率」。

 

當這個正弦波的簡諧外力」,作用在此SDOF單自由度系統」,由先前單元:#208,【SDOF簡諧激振系列(2):為甚麼簡諧激振,會有簡諧響應?】,質塊的位移響應𝒙(𝒕),可以區別出,有暫態響應(transient state response),以及「穩態響應(steady state response)的區間。

 

其中,有興趣的是「穩態位移響應」,也是簡諧響應」,可以寫出位移響應方程式:𝒙(𝒕)=𝑿𝐬𝐢𝐧(𝟐𝝅𝒇𝒕+𝝓),其中,

 

1.      𝑿:是「穩態位移響應」的「位移振幅」。

2.      𝒇:是「穩態位移響應」的「響應頻率」,此頻率值就是「簡諧外力」的「激振頻率」。

3.      𝝓是「穩態位移響應」的「相位角(phase angle),是「位移𝒙(𝒕)和「外力𝒇(𝒕)的「相位角」差。

 

特別有興趣的是「位移振幅𝑿 相位角𝝓。為了有效率的全盤了解穩態位移響應」的特性,所以,定義了頻率響應函數(Frequency Response Function, FRF)𝑯(𝒇)

 

1.      𝑯(𝒇) = 輸出/輸入。

2.      𝑯(𝒇) = 𝑿(𝒇)/𝑭(𝒇)

3.      𝑯(𝒇) =穩態位移振幅/外力振幅

 

這樣,可以快速知道𝑿(𝒇)𝑭(𝒇)的關係。又,因為不同的激振頻率𝒇,會有不同的穩態位移振幅𝑿,所以,分別以𝑿(𝒇)𝑭(𝒇)變數符號表示之。

 

針對「單自由度系統」之 FRF𝑯(𝒇) = 𝑿(𝒇)/𝑭(𝒇) = 𝟏/[(𝒌𝒎𝝎^𝟐 )+𝒊(𝝎𝒄)],會和系統參數」:mck相關,也會隨著不同的「激振頻率𝒇,而會有不同的𝑯(𝒇)

 

首先,由FRF定義:𝑯(𝒇) = 𝑿(𝒇)/𝑭(𝒇),可以推導出來,𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇)。也就是說,如果知道系統的mck,就可以求得頻率響應函數𝑯(𝒇),當已知簡諧外力」的「外力振幅𝑭,以及其激振頻率𝒇,就可以透過上面的方程式,推算出「穩態位移響應𝑿(𝒇),包括:位移振幅𝑿相位角𝝓

 

在此,列舉的實際數值案例,令「系統參數」:m = 1 (kg)c = 1 (N/ m/s)k = 39.48 (N/m),也就是mck固定。由「系統參數」:mck,可以推算得到「模態參數」:自然頻率𝒇𝒏 =1 (Hz)阻尼比𝝃 =0.0796。因為,0 < 𝝃 < 1,所以都是次阻尼狀態。

 

這個單元要來探討:簡諧外力振幅(harmonic force amplitude)增大或減小,對「頻率響應函數(Frequency Response Function, FRF)有甚麼影響?

 

在假設的簡諧外力」激振:𝒇(𝒕)=𝑭𝐬𝐢𝐧(𝟐𝝅𝒇𝒕),其中,𝑭簡諧外力振幅」,在此令有不同的「簡諧外力振幅𝑭 =1, 2, 3 (N);「簡諧外力」的「激振頻率」範圍,仍然取 𝒇=0~5 (Hz),因為𝒇𝒏 =1 (Hz)

 

當變動不同的「簡諧外力振幅𝑭 =1, 2, 3 (N),「模態參數」的變化特徵:

 

1.      𝑭增大,𝒇𝒏不變。因為:不同的外力作用,並不會改變系統參數」:mck,所以,「自然頻率𝒇𝒏不變。

2.      𝑭增大,𝝃不變。因為:不同的外力作用,並不會改變系統參數」:mck,所以,「阻尼比𝝃不變。

 

因為,「系統參數」:mck,不變,所以,「頻率響應函數𝑯(𝒇),也是相同的,當簡諧外力振幅𝑭有變動,會改變的是穩態位移振幅𝑿(𝒇),由前述,可以推導出來,𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇)

 

在此單元,要探討變動不同的「簡諧外力振幅𝑭 =1, 2, 3 (N),瞭解系統的穩態位移振幅𝑿(𝒇)會是如何變化,將已知的系統參數」:mck,帶入「單自由度系統」之 FRF方程式,並帶入不同的𝑭 =1, 2, 3 (N),可以求得穩態位移振幅𝑿(𝒇)

 

參閱圖示是畫出𝑿(𝒇)5種圖示,包括:(1)振幅(amplitude)(2)相位角(phase angle)(3)實數部(real)(4)虛數部(imaginary)、以及(5)奈氏圖(Nyquist plot),或稱為「極坐標圖(polar plot)

 

以下就針對𝑿(𝒇)5種圖示,在固定mck,而變動不同的𝑭 =1, 2, 3 (N)時,來觀察𝑿(𝒇)有甚麼特徵與差異:

 

1.      振幅(amplitude)𝑿(𝒇)曲線的峰值(peak),有最大的位移響應,對應的頻率就是「自然頻率𝒇𝒏。可以觀察到,變動不同的𝑭時,因為𝒇𝒏不變,所以峰值」是在相同位置。實務上,因為「阻尼比𝝃都很小,出現峰值」的頻率點,參閱圖示的方程式,可知,會是𝒇𝒇𝒏。另外,在峰值」頻率的振幅值,可參閱圖示的方程式,可知:在固定mck,其𝑯(𝒇)振幅值是不會變動的,但是,因為變動不同的𝑭 =1, 2, 3 (N)時,而𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇),所以𝑿(𝒇)會是比例的增大或減小。另外,一個重要特徵,當𝒇=0時,𝑯(0) =1/k,所以,𝑿(0) = 𝑭/k可以觀察到隨著𝑭增大,𝑿(0)也是比例的增大。

2.      相位角(phase angle):觀察圖示,可以知道不同的𝑭 =1, 2, 3 (N),其相位角」曲線完全相同,為甚麼呢?因為,系統的𝑯(𝒇)不會受到外力的影響,而有所改變。其共同的特徵,在自然頻率𝒇𝒏的頻率附近,會有𝝓 =180°相位角」變化。在𝒇=𝒇𝒏時,𝝓 =90°。當c值增大時,如圖示會有微小的偏移,不過,仍然有以下特徵:𝒇<𝒇𝒏時,𝝓≈0°,是同相(in phase)。在 𝒇>𝒇𝒏時,𝝓≈180°,是反相(out-of-phase)

3.      實數部(real)自然頻率𝒇𝒏會出現在,通過0」的頻率,因為𝒇𝒏不變,所以,通過0」的頻率都在相同的頻率點。當變動不同的𝑭 =1, 2, 3 (N)時,因為𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇),所以𝑿(𝒇)會是隨著𝑭增大,而會比例的增大

4.      虛數部(imaginary)自然頻率𝒇𝒏會出現在,有最大峰值」的頻率,因為𝒇𝒏不變,所以,最大峰值」的頻率都在相同的頻率點。同樣的,當變動不同的𝑭 =1, 2, 3 (N)時,因為𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇),所以𝑿(𝒇)會是隨著𝑭增大,而會比例的增大

5.      奈氏圖(Nyquist plot),或稱為「極坐標圖(polar plot):會形成一個「圓圈」,在「虛數部」最大值的頻率點,就是結構的「自然頻率」。因為,隨著𝑭增大,所以,峰值」頻率所對應的「虛數部」振幅值增大,因此,「圓圈」會有較大的直徑。

 

綜合一下這個單元的討論重點:簡諧外力振幅(harmonic force amplitude)增大或減小,對「頻率響應函數(Frequency Response Function, FRF)有甚麼影響?統整如下:

 

1.      令「系統參數」:mck,不變,變動不同的「簡諧外力振幅𝑭 =1, 2, 3 (N),瞭解系統的穩態位移振幅𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇)會是如何變化。

2.      𝑭增大,𝒇𝒏不變。

3.      𝑭增大,𝝃不變。

4.      振幅(amplitude)圖:變動不同的𝑭時,因為𝒇𝒏不變,所以峰值」是在相同位置。變動不同的𝑭 =1, 2, 3 (N)時,而𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇),所以𝑿(𝒇)會是比例的增大或減小。所以,「峰值」的振幅值𝑿(𝒇),也會因為𝑭增大,而振幅值𝑿(𝒇)隨著比例增大。

5.      相位角(phase angle)圖:不同的𝑭 =1, 2, 3 (N),其相位角」曲線完全相同。因為,系統的𝑯(𝒇)不會受到外力的影響,而有所改變。

6.      實數部(real)圖:通過0」的頻率,會是「自然頻率𝒇𝒏變動不同的𝑭 =1, 2, 3 (N)時,因為𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇),所以𝑿(𝒇)會是隨著𝑭增大,而會比例的增大

7.      虛數部(imaginary)有最大峰值」的頻率,會是「自然頻率𝒇𝒏變動不同的𝑭 =1, 2, 3 (N)時,因為𝑿(𝒇) = 𝑭(𝒇) 𝑯(𝒇),所以𝑿(𝒇)會是隨著𝑭增大,而會比例的增大

8.      奈氏圖(Nyquist plot),或稱為「極坐標圖(polar plot):會形成一個「圓圈」,在「虛數部」最大值的頻率點,就是結構的「自然頻率」。因為,隨著𝑭增大,所以,峰值」頻率所對應的「虛數部」振幅值增大,因此,「圓圈」會有較大的直徑。

 

以上個人看法,請多指教!

 

王栢村

2021.05.15