感謝山衛科技同意轉載「山衛科技電子報」系列專題文章,本篇文章原始連結為http://www.samwells.com/bc/news-tw/news-tech-news-tw/473-news-tech-news-tw-2015-01-01-fatigue-endurance-road-test-program
德國Zodiac DATA 整合/分散式資料擷取系統 DATA REC4(飛航等級)
如何能在車輛或其它載具上同時擷取各種高低速不同訊號及數位匯流排,甚至影像訊號而又能保證其精度及同步化數據,以確保車輛在高速動作中,能精確而有效的同步記錄訊息,提供給車輛疲勞耐久,振動噪音,動力學,撞擊實驗中做有效的後處理數據分析用途? 同樣的,在高空中飛行的航空器,如何能小型化,堅固,耐天候,體積分散,彈性應用,並能結合空用及地面設備同步化記錄,擷取,取樣,分解,重構,傳輸,接收並回覆原訊息,達到同步傳輸的功能;符合飛航試驗,任務記錄器,或臨時性數據結構分析,教練要求,甚至顫振分析的要求?

有許多的不同介面及通道數可以滿足一般汽車多用途的各種試驗需求,如 電壓、電荷、應變計、CAN、溫度、ICP…等等如下

建議方案:
DIC24*3=72通道ICP(電壓輸入) + Straingauge + Video + Temp + CAN +RPM 組合成為一個全功能的資料擷取系統
通道範圍列表

特點
- 通道類多, 適合疲勞及NVH各種應用如加速規、應變計、麥克風、RPM、壓力、影像、CAN…等等
- 通道數可以很多 單一片模組最多可以24通道ICP/20KHZ頻寬 系統通道最多可以768個高速通道
- 支援即時設定顯示軟體ED Win 或 EDASWIN PLUS 做圖形化處理及計算功能
- 可以使用 FLEXPRO 或 EDASWIN PLUS做後處理分析軟體進行資料處裡
- 不用電腦紀錄使用硬碟、固態硬碟或一體式整合工業級電腦紀錄媒體 適合在非常不良的道路狀況試驗環境
- 眾多的軟體可以支援

及時處理軟體 EDASWIN PLUS 顯示執行畫面


模組的硬體輸入參數設定

可以引入CAN BUS 的協定設定檔案 CAN DBC 馬上可以解碼導入車上CAN資料

Features of Software Package EdasWin
General:
Analysis:
Algebraic functions:
Trigonometric functions:
Calculation functions:
average: mean, max, min
Signal processing:
Signal analysis:
Statistical analysis:
Other functions:
Layout Editor for Report Generation:
Data Import:
Data Export to multiple data formats:
後處理分析 FLEXPRO 9.1 功能列表

COUNTING 功能
Example of a Rainflow analysis for counting peaks as part of a fatigue analysis

Counting procedures according to DIN 45667
Compound counting procedures according to DIN 45667
統計分析及頻譜功能

ORDER TRACKING

人體振動暴露量統計

客戶群
ZDS:
AgustaWestland Airbus Deutschland Airbus Operation SAS AleniaAeronautica
Alstom LHB GmbH, Salzgitter Audi Ingolstadt BAe Systems
Bechtel Bettis Bell Helicopter BMW
Boeing CorporationCentrum Naukowo-Techniczne Kolejnictwa Changan Automotive
China Flight Test Establishment Daimler Dassault-Aviation
Denel (Pty) Limited DSTL EADS-ASTRIUM EADS-CASA
Edwards AFB Eglin AFB Elbit Systems
Electric Boat Corporation Embraer
Erprobungsstelle fur Schiffe in Kiel Eurocopter Faurecia
Fiat-SIG Schienenfahrzeuge AG Ford AG
Getrag Inovationscenter Gulfstream Aerospace Corporation
HAL Hawker Beachcraft Heidelberger Druck Hill AFB
Hochschule Heilbronn Hyundai
Israel Aerospace Industries Karl Mayer Textilmaschinen GmbH
Kawasaki Heavy Industries Kirtland AFB Knorr Bremsen
Korea Aerospace Industries L3 Communications Learjet Inc.
Lockheed Martin MAN Nutzfahrzeuge, Munchen
MBDA NAS Patuxent River NASA Goddard
NASA JFK Space Center NAWC China Lake
NAWC Pt. Mugu PATAC Porsche AG, Weissach
Porsche Engineering, Bietigheim Pratt & Whitney QinetiQ
Raytheon Missile Services Renault
Robert Bosch Aerospace Corporation Robert Bosch GmbH, Dieselsysteme
Robert Bosch GmbH, Gasolinesysteme Robert Bosch GmbH, Hybridentwicklung
Robert Bosch Inc. Rolls-Royce
Royal Air Force U.K. RWTH Aachen Institut fur Kraftfahrzeuge
Schaeffler KG Schenck RoTec GmbH Snecma
Siemens Bosch Haushaltsgerate Siemens E-Motoren, Nurnberg
Sikorsky Aircraft Company Thales Air Defence
U-Boot Flottile Uni Heilbronn Visteon Voith Turbo
VW Getriebe, Baunatal VW Wolfsburg WASS
White Sands AFB ZF
FLEXPRO
ABB ‧ AIM ‧ Airbus ‧ Aisin Seiki ‧ Aker Subsea ‧ Alcatel ‧ Alfa Romeo ‧ Alstom ‧ Andritz ‧ AREVA ‧ Aral ‧ Aucoteam ‧ Autoflug ‧ Automobiltechnikum Bayern ‧ AVL List BASF Bayer BMW ‧ Boeing ‧ Bosch ‧ Bridgestone ‧ Brose ‧ Bugatti ‧ Bundeswehr ‧ Caterpillar ‧ Central Research Institute of Electric Power Industry ‧ CERN ‧ Chicago Transit Authority Claas Compagne GEnErale des Eaux ‧ Continental ‧ Contitect ‧ DaeWoo Heavy Industries & Machinery ‧ Daihatsu motor ‧ DaimlerChrysler ‧ DEKRA Automobil Delphi Automotive DEMAG ‧ Denso ‧ Deutsche Bahn ‧ Deutsche Windguard ‧ Deutz ‧ Diehl & Eagle Picher ‧ DLR ‧ Doosan Babcock ‧ Dornier ‧ EADS ‧ Ebara ‧ EDF ‧ ELASIS ‧ Elf E.ON Kraftwerke irisbus ‧ EFM Electronic ‧ Engel ‧ Entergy Operations ‧ ETA ‧ Ferrari F1 Racing Team ‧ FIAT ‧ Ford Motor Company ‧ Fraunhofer Institute ‧ GE Global Research GE Jenbacher General Electric ‧ Getzner Werkstoffe ‧ GIF ‧ Groz-Beckert ‧ Hella ‧ Hilti ‧ Hino motor ‧ Hitachi ‧ Honda ‧ Honeywel ‧ HSM ‧ Hydac ‧ Hyundai ‧ Infineon ‧ Interroll ‧ ISPESLItalian ‧ Army ‧ Italian Navy ‧ Iveco Motorenforschung ‧ IWIS Motorsysteme ‧ Japan Nuclear Sycle Development Institute ‧ JATCO ‧ JFE STEEL ‧ Kaeser ‧ Kampmann ‧ Kjellberg ‧ Finsterwalde ‧ Kluxen ‧ Liebherr ‧ Loesche ‧ LTi Drives ‧ Lumberg ‧ MAN ‧ Max Holder ‧ MIBRAG ‧ MKS Instruments ‧ MRU ‧ MTU Aearo Engines ‧ NuCellSys ‧ Pierburg ‧ Polysius Polytype ‧ Potain ‧ PSA ‧ Railway Technical Research Institute ‧ Renault-Samsung Motor ‧ Rockwell Collins ‧ RUD ‧ Ruhrgas ‧ Reckmann ‧ RWE ‧ RVI (Renault Industrial Vehicle) Sab Wabco ‧ Sanden ‧ Sandia National Labs ‧ Scheuch ‧ Schnell Zundstrahlmotoren ‧ Schutz ‧ Schuler Pressen ‧ SGL Carbon ‧ Siemens ‧ SKF Osterreich ‧ Sogin ‧ Sudbayerische Portland-Zementwerk ‧ Suzuki Motor ‧ Tenneco ‧ Thales ‧ Thyssen Transrapid ‧ Tiefenbach ‧ TI Automotive ‧ TIWAG Tiroler Wasserkraft ‧ TOSOH ‧ Toyota ‧ TRW ‧ T?V Rheinland UPM-Kymene ‧ US Air Force ‧ US Navy ‧ Valeo ‧ VA Tech ‧ Visteon ‧ Voith ‧ Volkswagen ‧ Vorwerk ‧ Wacker Chemie ‧ West Japan Railway Company ‧ Yamaha ‧ Yazaki ‧ ZF Sachs











These criteria are met for both mounting variants. The rigid body modes occur in both variants at around 30 Hz, but in the upright mounting variant, some resonances are less distinct and between 600 Hz and 1000 Hz additional peaks are present. The upright mounting method’s advantage of a quicker setup is offset by the disadvantage of overestimating the modal damping values and additional resonances. As well as the mounting method, the stinger used to join the structure and shaker also has a major influence on the experiment result (Fig. 4). The blue curve relates to a stinger variant with two clamp sets and the green curve relates to a variant with a simple stud screw clamp fixture. The results are similar in principle, though the simpler variants exhibit additional resonances in the low frequency range and much less distinct resonances in the high frequency range. Consequently, the short, thin, rigid-fixed stinger is better suited to the structure under investigation and to measurements in the frequency range above 1200 Hz.
Modal analysis is conducted by the Block-Lanczos method available in MD Nastran. To correlate the two models (Fig. 5), the experimental data is imported into MATLAB using the UFF format while the numerical data is imported by use of the MATLAB/Nastran interface IMAT FEA. The two datasets are then automatically positioned and correlated. For the first 16 eigenfrequencies, this results in a mean MAC correlation (Fig. 6) of 91% and a mean frequency variation of 1.28%. The MAC correlation is better in the low modes, while the frequency correlation is better in the higher modes.
ABD Euro NCAP AEB Testing介紹 