【振動噪音產學技術聯盟】網頁導覽影片

為提供訪客更多、更清楚的資訊,我們建立【振動噪音產學技術聯盟】網頁導覽影片,只要10分鐘的時間,快速為您介紹聯盟網頁架構、網頁內涵及如何應用,讓您多了解【振動噪音產學技術聯盟】網頁!

振動噪音產學技術聯盟

Facebook粉絲專頁

【活動訊息】虎門科技 ANSYS R16.0 新功能系列講座

ANSYS R16.0 新功能系列講座
3/5台中,3/10台南,邀請您來報名參加~

ANSYS廣泛的模擬解決方案,包括計算流體動力學、結構分析、電子產品、系統工程和嵌入式軟體陣列,其宗旨為在產品概念化階段,儘早解決這些產品的完整性和創新的挑戰。雖然模擬曾經被大量使用在測試和驗證階段,ANSYS公司先進的解決方案,確保更好的早期重複開發。

唯一工程軟體獲獎肯定:”ANSYS的解決方案是針對客戶的具體要求,在產品開發過程中的每個階段,從最初的產品設計和概念化,詳細的工程設計和最終產品的驗證,”Frost&Sullivan的顧問伊姆蘭汗說,“這些模擬解決方案,不僅加快了產品開發過程,同時也消除了昂貴的原型製作費用。” 參加本次發表會您將會發現各種創新,在ANSYS CFD 16.0計算流體動力學解決方案,您將了解的前處理,透平機械,伴隨求解器技術,多相流,和高性能計算,以及其他領域的新的和增強的功能。無論您的應用程序,你將受益於ANSYS CFD 16.0方案的高級功能。

而在ANSYS Mechanical 16.0有著重大改進,包括模擬結構(薄殼網格,幾何製作)、接觸建模、效率提升、複合材料、材料失效和彈性分析。探索如何透過這些先進的功能,加速你的產品設計過程,提供您一個優越的條件,讓您的產品在最短的時間內推向市場。

 研討會資訊 :

■ 台中場: 2015/3/5(四)13:30~17:30,
    逢甲大學中科校區(台中市407西屯區東大路1段951號)
    聯絡人:(04)22966080 黃小姐   rita.huang@cadmen.com

■ 台南場:2015/3/10(二)13:30~17:30,
    成功大學光復校區國際會議廳(台南市東區大學路一號光復校區國際會議廳)
    聯絡人:(06)3842655 林小姐   cherry.lin@cadmen.com


■ 報名費用:免費

■ 適合對象:研發工程師、研發主管、ANSYS使用者

詳細資訊請參考虎門科技官方網站

【山衛科技】POLYTEC非接觸振動量測技術於風力發電機之應用

感謝山衛科技同意轉載「山衛科技電子報」系列專題文章,本篇文章原始連結為http://www.samwells.com/bc/news-tw/news-tech-news-tw/484-news-tech-news-tw-2015-02-01-non-contact-vibration-measurements-on-wind-power-plants


        風力發電機的設計規範與維護程序必須確保零組件未超過其機械極限,當風力發電機運轉時,風力會刺激機體振動,使塔身產生擺動,在特定自然頻率下甚至可造成旋轉葉片高達1公尺的偏移。一般風力發電機的監控方式是在驅動軸上裝設感測器,提供運轉中的軸承狀態資訊,然而運轉中的葉片狀態監控需要更加複雜的遙測技術。這篇文章說明如何使用雷射測振儀進行非接觸式且長距離的量測轉動葉片,甚至不需在葉片表面塗佈反射膠條也能輕易量得葉片振動。
    Wind power plant vibrations must be monitored during operation to optimize the simulation models used for design and construction, and to ensure faultless day-to-day operation by recognizing excessive material stress and fatigue prior to failure. Such preventative maintenance, or condition monitoring, is often done with the aid of vibration sensors which are placed along various sections of the drive shaft. These sensors can then monitor vibrations and provide information on the status of bearings in the power transmission. To monitor the rotor blades is much more difficult, particularly during operation, since measuring vibrations with contact sensors is only possible when using elaborate telemetry systems.
    Laser vibrometry is a non-contact, optical technique for measuring vibration with zero-mass loading. The laser probe permits a long standoff distance (remote) from the measurement point, and, in the ideal case, there is little surface preparation prior to the measurement. This investigation tested the suitability of using laser vibrometers for non-contact, remote measurement of vibrations in wind power plants. The study was within the framework of a much larger project to research sensorenabled operational monitoring systems. This scientific work is part of the research network CEwind, in which the activities of many German universities are grouped together with the goal of elaborating and solving fundamental issues concerning future wind power plants, parks and infrastructure.

Experimental Issues

 Laser spots on the reflective film on the rotor blade.
    The wind power plant examined was an Enercon model E-30 with a nominal rating of 300 kW and a hub height of 50 m. Various vibrometer systems were placed at ground level and used for measurements on the tower shaft and on the rotor blades. In the experiment, apart from the eigen frequencies, the signal-to-noise ratio and transmission functions should be determined for both unprepared surfaces and those prepared with reflective film. Both a rotor blade and the hub had reflective film bonded in specified places in advance (Fig. 1). 

    For high resolution and reference measurements, an OFV-505 single point vibrometer was available. The OFV-5000 vibrometer controller was equipped with a high-resolution, digital VD-09 velocity decoder. Other measurement points were acquired using a PSV-400 Scanning Vibrometer. The scanner mirrors made it easy to align the laser to the measurement locations and with the aid of the integrated geometry scanner, it was possible to determine the coordinates automatically.

Results

    Vibration measurements with a good signal-to-noise ratio can be made easily on the prepared surface, even at standoff distances of 90 m. The first eigen frequencies are at 0.47 Hz for the tower or the hub and at 1.85 Hz for the rotor blade. Without averaging, harmonics of these frequencies can be seen up through 50 Hz. On the surfaces that have not been prepared, good measurements are also possible using
Time progression of the vibrational velocity on the rotor blade; Left: PSV-400 with reflective film; Right: OFV-505 with SLR lens, without reflective film, with low pass filter applied (5 Hz).   the OFV-505 sensor head with an SLR Super Long Range lens. The measurement values must be limited to less than 5 Hz with a low pass filter (Fig. 2). To align and monitor the measurement spot without reflective film, a telescope with a narrow bandfilter for the laser wavelength, or other optical aid, is strongly recommended. To determine the transmission function, measurements were carried out with several vibrometers at the same time on a fixed reference position, and on various points on the rotor blade. The measurements result in noise levels of 1 μm/s for the velocity signal (at 4 mHz resolution), or respectively 0.1 μm for the displacement signal. Displacement amplitudes of up to 8 mm were observed, at moderate wind forces (12 … 28 km/hr.) during the measurements.
     The equipment worked well and first attempts to make measurements during operation (rotating blades) were successful. The tower vibrations are superimposed with the periodicity occurring as a result of the rotor rotation (Fig. 3, left). 
     After a Fast Fourier Transformation (FFT) of the signal and applying a low pass filter, the first eigen frequency of the tower can clearly be seen at 0.47 Hz (Fig. 3, right). To be able to acquire the vibrations of the rotor blades during operation as well, the measurement would have to be made closer to the hub. There, the duty cycle for the retention period of the laser spot on the rotor blade is more favorable. With the aid of a time resolved FFT, it would then be possible to separate the tower and rotor vibrations from each other.

Summary and Outlook

Laser vibrometers are a powerful tool for remote, non contact vibration monitoring of wind power plants or other large engineered structures. Equipped with the appropriate measurement technology and a suitable measurement setup, the measurements are easily made from the ground with the plant operating or stationary even without applying reflective film.

Source: InFocus – Optical Measurement Solutions – Issue 2/2008 – ISSN 1864-9203.

2015年2月 山衛科技電子報

2015年2月 山衛科技電子報

 系列專題

   產品品質與可靠度

  • item HALT/HASS加速試驗技術對產品設計的重要性 
      HALT(高加速壽命試驗)/HASS(高加速應力篩選)技術是以步進應力的激勵方式,收集產品面對環境應力條件的整體資料,再同時找尋產品的操作和破壞應力極限。 ..

    HALT/HASS加速試驗技術對產品設計的重要性
  • item XRF非破壞材質分析=>鍍層下的奧秘(一) 
     在許多金屬產業的應用中,非破壞式的材質檢測已被廣泛大量的應用在材質定量分析,快速/定量的結果大幅提昇了品管的效率。本章的主題則是來到鍍層下的金屬底材的探索,金屬成品絕大部份會使用鍍層來保護底材,使其不受氧化,確保內部材質的穩定,而在非破壞分析的趨勢下,已經過表面處理的底材實際成份含量,往往受到鍍層的影響,而無法直接分析計算出來 ..
     
  • item Thermo用戶見證~威爾礦業(金屬材質鑑定) 
     使用手持式X光螢光分析儀來加強金屬材質鑑定 ..
     
  • item Polytec非接觸振動量測技術於風力發電機之應用 
     風力發電機的設計規範與維護程序必須確保零組件未超過其機械極限,當風力發電機運轉時,風力會刺激機體振動,使塔身產生擺動,在特定自然頻率下甚至可造成旋轉葉片高達1公尺的偏移 ..
     
  Read more ... 

   活動快訊